Windows API一日一练(90)GetGlyphOutline函数

Post date: 2012/3/27 上午 07:52:56

分类: Direct3D2007-12-16 14:54 6546人阅读 评论(4) 收藏 举报

中西文化的差异,导致在电子信息里处理也大不相同,在英文里只需要26个字母就可以显示所有文章了,而在中文里需要最基本的字符就有2000多个。对于一些在嵌入式软件里要显示的字符,那么就得手动去构造所有图形,这是一个比较大的工作量,如果让每个厂家都去完成这个任务,显然是不可能的。面对着大量嵌入式用户的需求,那么就需要解决中文字模的图形问题。毕竟大家经常使用Windows,最先想到的,肯定是怎么样把里面的字符提取图形出来,生成自己需要的几个字库。下面就来介绍怎么样用函数GetGlyphOutline获取显示字符的图形数据。

函数GetGlyphOutline声明如下:

WINGDIAPI DWORD WINAPI GetGlyphOutlineA( __in HDC hdc,

__in UINT uChar,

__in UINT fuFormat,

__out LPGLYPHMETRICS lpgm,

__in DWORD cjBuffer,

__out_bcount_opt(cjBuffer) LPVOID pvBuffer,

__in CONST MAT2 *lpmat2

);

WINGDIAPI DWORD WINAPI GetGlyphOutlineW( __in HDC hdc,

__in UINT uChar,

__in UINT fuFormat,

__out LPGLYPHMETRICS lpgm,

__in DWORD cjBuffer,

__out_bcount_opt(cjBuffer) LPVOID pvBuffer,

__in CONST MAT2 *lpmat2

);

#ifdef UNICODE

#define GetGlyphOutline GetGlyphOutlineW

#else

#define GetGlyphOutline GetGlyphOutlineA

#endif // !UNICODE

hdc是设备句柄。

uChar是需要获取图形数据的字符。

fuFormat是获取数据的格式。

lpgm是获取字符的相关信息。

cjBuffer是保存字符数据的缓冲区大小。

pvBuffer是保存字符数据的缓冲区。

lpmat2是3*3的变换矩阵。

调用函数的例子如下:

#001 //浮点数据转换为固定浮点数。

#002 FIXED FixedFromDouble(double d)

#003 {

#004 long l;

#005 l = (long) (d * 65536L);

#006 return *(FIXED *)&l;

#007 }

#008

#009 //设置字体图形变换矩阵。

#010 void SetMat(LPMAT2 lpMat)

#011 {

#012 lpMat->eM11 = FixedFromDouble(2);

#013 lpMat->eM12 = FixedFromDouble(0);

#014 lpMat->eM21 = FixedFromDouble(0);

#015 lpMat->eM22 = FixedFromDouble(2);

#016 }

#017

#018 //

#019 //获取字模信息。

#020 //蔡军生 2007/12/16 QQ:9073204 深圳

#021 void TestFontGlyph(void)

#022 {

#023 //创建字体。

#024 HFONT hFont = GetFont();

#025

#026 //设置字体到当前设备。

#027 HDC hDC = ::GetDC(m_hWnd);

#028 HFONT hOldFont = (HFONT)SelectObject(hDC,hFont);

#029

#030 //设置字体图形变换矩阵

#031 MAT2 mat2;

#032 SetMat(&mat2);

#033

#034

#035 GLYPHMETRICS gm;

#036

#037 //设置要显示的字符。

#038 TCHAR chText = L'蔡';

#039

#040 //获取这个字符图形需要的字节的大小。

#041 DWORD dwNeedSize = GetGlyphOutline(hDC,chText,GGO_BITMAP,&gm,0,NULL,&mat2);

#042 if (dwNeedSize > 0 && dwNeedSize < 0xFFFF)

#043 {

#044 //按需要分配内存。

#045 LPBYTE lpBuf = (LPBYTE)HeapAlloc(GetProcessHeap(),HEAP_ZERO_MEMORY,dwNeedSize);

#046 if (lpBuf)

#047 {

#048 //获取字符图形的数据到缓冲区。

#049 GetGlyphOutline(hDC,chText,GGO_BITMAP,&gm,dwNeedSize,lpBuf,&mat2);

#050

#051 //计算图形每行占用的字节数。

#052 int nByteCount = ((gm.gmBlackBoxX +31) >> 5) << 2;

#053

#054 //显示每行图形的数据。

#055 for (int i = 0; i < gm.gmBlackBoxY; i++)

#056 {

#057 //

#058 for (int j = 0; j < nByteCount; j++)

#059 {

#060

#061 BYTE btCode = lpBuf[i* nByteCount + j];

#062

#063 //按字节输出每点的数据。

#064 for (int k = 0; k < 8; k++)

#065 {

#066

#067 if (btCode & (0x80>>k))

#068 {

#069

#070 OutputDebugString(_T("1"));

#071 }

#072 else

#073 {

#074 OutputDebugString(_T("0"));

#075 }

#076

#077 }

#078

#079 }

#080

#081 //

#082 OutputDebugString(_T("/r/n"));

#083 }

#084

#085 //

#086 HeapFree(GetProcessHeap(),0,lpBuf);

#087 }

#088 }

#089

#090 //

#091 SelectObject(hDC,hOldFont);

#092 DeleteObject(hFont);

#093

#094 //

#095 ReleaseDC(m_hWnd,hDC);

#096 }

#097

输出的结果如下:

00000000000000010000000000000000

00000000110000011000000000000000

00000000100000011000000000000000

00000000100000011000011000000000

11111111111111111111111100000000

01000000100000011000000000000000

00000000100000011000000000000000

00000100100000011000000000000000

00000110100000010000000000000000

00000100000000000000000000000000

00001100000001000000100000000000

00001111111101111111110000000000

00001000001111000000110000000000

00011000001000100001100000000000

00010100001000100001000000000000

00010010011000100011000000000000

00100011010000010010000000000000

00110010110000011010000000000000

01011000110000001100000000000000

10001000100000001100000000000000

00001001100000010110000000000000

00001011011111111011000000000000

00000010000000000001110000000000

00000110000000000000111100000000

00001100000000000110011100000000

00011111111111111111001000000000

00110000000010000000000000000000

01000000000010000000000000000000

00000001000010000000000000000000

00000011100010001100000000000000

00000011000010000010000000000000

00000110000010000011100000000000

00001100000010000001100000000000

00011000100010000000110000000000

00110000011110000000110000000000

01000000001110000000010000000000

00000000000100000000000000000000